315 research outputs found

    All-optical vector visual cryptography with high security and rapid decryption

    Get PDF
    Meta optics-empowered vector visual cryptography at the abundant degrees of freedom of light and spatial dislocation can open an avenue for optical information security and anti-counterfeiting with a compact footprint and rapid decryption

    Femtosecond Laser Inscribed Y-Branch Waveguide in Nd:YAG Crystal: Fabrication and Continuous-Wave Lasing

    Get PDF
    Rectangular Y-branch cladding waveguides have been fabricated in Nd:YAG crystal by femtosecond laser inscription. Such novel configurations are fabricated with depth of 50 μm, supporting multimode guidance in both TM and TE polarizations. Continuous wave laser oscillations at wavelength of 1.06 μm have been achieved under the optical pump at 808 nm. The maximum output power is 0.2 W with a slope efficiency of 20% in the device with splitting angle of 0.5°

    Resonant enhancement of second harmonic generation in the mid-infrared using localized surface phonon polaritons in sub-diffractional nanostructures

    Full text link
    We report on strong enhancement of mid-infrared second harmonic generation (SHG) from SiC nanopillars due to the resonant excitation of localized surface phonon-polaritons within the Reststrahlen band. The magnitude of the SHG peak at the monopole mode experiences a strong dependence on the resonant frequency beyond that described by the field localization degree and the dispersion of linear and nonlinear-optical SiC properties. Comparing the results for the identical nanostructures made of 4H and 6H SiC polytypes, we demonstrate the interplay of localized surface phonon polaritons with zone-folded weak phonon modes of the anisotropic crystal. Tuning the monopole mode in and out of the region where the zone-folded phonon is excited in 6H-SiC, we observe a prominent increase of the already monopole-enhanced SHG output when the two modes are coupled. Envisioning this interplay as one of the showcase features of mid-infrared nonlinear nanophononics, we discuss its prospects for the effective engineering of nonlinear-optical materials with desired properties in the infrared spectral range.Comment: 16 pages, 3 figure

    RIS-Position and Orientation Estimation in MIMO-OFDM Systems with Practical Scatterers

    Full text link
    In this paper, we investigate the problem of estimating the position and the angle of rotation of a mobile station (MS) in a millimeter wave (mmWave) multiple-input-multiple-output (MIMO) system aided by a reconfigurable intelligent surface (RIS). The virtual line-of-sight (VLoS) link created by the RIS and the non-line-of-sight (NLoS) links that originate from scatterers in the considered environment are utilized to facilitate the estimation. A two-step positioning scheme is exploited, where the channel parameters are first acquired, and the position-related parameters are then estimated. The channel parameters are obtained through a coarser and a subsequent finer estimation processes. As for the coarse estimation, the distributed compressed sensing orthogonal simultaneous matching pursuit (DCS-SOMP) algorithm, the maximum likelihood (ML) algorithm, and the discrete Fourier transform (DFT) are utilized to separately estimate the channel parameters. The obtained channel parameters are then jointly refined by using the space-alternating generalized expectation maximization (SAGE) algorithm, which circumvents the high-dimensional optimization issue of ML estimation. Departing from the estimated channel parameters, the positioning-related parameters are estimated. The performance of estimating the channel-related and position-related parameters is theoretically quantified by using the Cramer-Rao lower bound (CRLB). Simulation results demonstrate the superior performance of the proposed positioning algorithms.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light

    Get PDF
    10.1038/srep09977Scientific Reports

    Climatology of aerosol optical properties and black carbon mass absorption cross section at a remote high-altitude site in the western Mediterranean Basin

    Get PDF
    Aerosol light scattering (&sigma;<sub>sp</sub>), backscattering (&sigma;<sub>bsp</sub>) and absorption (&sigma;<sub>ap</sub>) were measured at Montsec (MSC; 42°3' N, 0°44' E, 1570 m a.s.l.), a remote high-altitude site in the western Mediterranean Basin. Mean (±SD) &sigma;<sub>sp</sub>, &sigma;<sub>bsp</sub> and &sigma;<sub>ap</sub> were 18.9 ± 20.8, 2.6 ± 2.8 and 1.5 ± 1.4 Mm<sup>−1</sup>, respectively at 635 nm during the period under study (June 2011–June 2013). Mean values of single-scattering albedo (SSA, 635 nm), the scattering Ångström exponent (SAE, 450–635 nm), backscatter-to-scatter ratio (<i>B</i> / <i>S</i>, 635 nm), asymmetry parameter (<i>g</i>, 635 nm), black carbon mass absorption cross section (MAC, 637 nm) and PM<sub>2.5</sub> mass scattering cross section (MSCS, 635 nm) were 0.92 ± 0.03, 1.56 ± 0.88, 0.16 ± 0.09, 0.53 ± 0.16, 10.9 ± 3.5 m<sup>2</sup> g<sup>−1</sup> and 2.5 ± 1.3 m<sup>2</sup> g<sup>−1</sup>, respectively. The scattering measurements performed at MSC were in the medium/upper range of values reported by Andrews et al. (2011) for other mountaintop sites in Europe due to the frequent regional recirculation scenarios (SREG) and Saharan dust episodes (NAF) occurring mostly in spring/summer and causing the presence of polluted layers at the MSC altitude. However, the development of upslope winds and the possible presence of planetary boundary layer air at MSC altitude in summer may also have contributed to the high scattering observed. Under these summer conditions no clear diurnal cycles were observed for the measured extensive aerosol optical properties (&sigma;<sub>sp</sub>, &sigma;<sub>bsp</sub> and &sigma;<sub>ap</sub>). Conversely, low &sigma;<sub>sp</sub> and &sigma;<sub>ap</sub> at MSC were measured during Atlantic advections (AA) and winter regional anticyclonic episodes (WREG) typically observed during the cold season in the western Mediterranean. Therefore, a season-dependent decrease in the magnitude of aerosol extensive properties was observed when MSC was in the free troposphere, with the highest free-troposphere vs. all-data difference observed in winter and the lowest in spring/summer. The location of MSC station allowed for a reliable characterization of aerosols as a function of the main synoptic meteorological patterns. The SAE was the lowest during NAF and showed an inverse correlation with the outbreak intensity, indicating a progressive shift toward larger particles. Moreover, the strength of NAF episodes in the region led to a slope of the scattering vs. absorption relationship among the lowest reported for other mountaintop sites worldwide, indicating that MSC was dominated by dust aerosols at high aerosol loading. As a consequence, SSA showed a nearly monotonic increase with increasing particle concentration and scattering. The SAE was the highest during SREG, indicating the presence of polluted layers dominated by smaller particles. Correspondingly, the asymmetry parameter was lower under SREG compared with NAF. The MAC and MSCS were significantly higher during NAF and SREG compared to AA and WREG, indicating an increase of absorption and scattering efficiencies associated with the summer polluted scenarios. The optical measurements performed at the MSC remote site were compared with those simultaneously performed at a regional background station in the western Mediterranean Basin located at around 700 m a.s.l. upstream of the MSC station

    Political Concepts as an Important Discursive Instrument for the Indirect Formation of Global and Regional Leadership

    Get PDF
    В статье рассматривается политический концепт, который является ключевым лингвистическим инструментом в формировании глобального и регионального лидерства и становится наиболее перспективным объектом исследования в рамках политической лингвистики.The political concepts rooted in the culturally specific psychology, collective memory, religious beliefs and historical traditions, are sure to influence political communication and facilitate the formation of legitimacy of state power on the non-linguistic level.This article examines the role of political concepts in shaping global and regional leadership. It is noted that as an important discursive element characterizing, expressing and manifesting the basic values of the state, the political concept is the key linguistic tool for the formation of global and regional leadership and becomes the most promising object of research within the framework of political linguistics. The article suggests looking at this phenomenon through the prism of the discursive field within the SCO created by Russia as a way of fixing new concepts oriented towards the regional leadership of the country. It is shown that Russian President Vladimir Putin has taken the initiative of conceptualization of the process of formation of the “Great Eurasian Partnership”. Through the intersubjective interpretation of this political concept by way of formation of discursive acts it influences the discursive construction of the adoption of the idea of Eurasian economic integration by the member states. This explains the peculiarities of the discourse and the interests of the Russian Federation within the SCO

    Microsphere femtosecond laser sub-50 nm structuring in far field via non-linear absorption

    Get PDF
    Creation of arbitrary features with high resolution is critically important in the fabrication of nano-optoelectronic devices. Here, sub-50 nm surface structuring is achieved directly on Sb2S3 thin films via microsphere femtosecond laser irradiation in far field. By varying laser fluence and scanning speed, nano-feature sizes can be flexibly tuned. Such small patterns are attributed to the co-effect of microsphere focusing, two-photons absorption, top threshold effect, and high-repetition-rate femtosecond laser-induced incubation effect. The minimum feature size can be reduced down to ~30 nm (λ/26) by manipulating film thickness. The fitting analysis between the ablation width and depth predicts that the feature size can be down to ~15 nm at the film thickness of ~10 nm. A nano-grating is fabricated, which demonstrates desirable beam diffraction performance. This nano-scale resolution would be highly attractive for next-generation laser nano-lithography in far field and in ambient air
    corecore